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In this work, the evolution of exoplanet orbits at the late stages of stellar evolution is studied
by the method of population synthesis. The evolution of stars is traced from the Main Sequence
stage to the white dwarf stage. The MESA package is used to calculate evolutionary tracks. The
statistics of absorbed, ejected, and surviving planets by the time of the transformation of parent
stars into white dwarfs are calculated taking into account the change in the rate of star formation in
the Galaxy over the entire time of its existence. Planets around stars in the range of initial masses
1-8 M are considered since less massive stars do not have time to leave the Main Sequence during
the lifetime of the Galaxy, and more massive ones do not lead to the formation of white dwarfs. It is
shown that with the initial @ — M}, distribution of planets adopted in this work, most (about 60%)
of the planets born from stars in the mass range under study are absorbed by their parent stars
at the giant stage. A small fraction of the planets (less than one percent) are ejected from their
systems because of the mass loss due to the stellar wind. The estimated number of ejected planets
with masses ranging from 0.04 Earth masses to 13 Jupiter masses in the Milky way is approximately

equal to 300 million.

1. INTRODUCTION

About three decades have passed since the discovery of
the first exoplanets [I], [2]. During this time, the number
of confirmed extrasolar planets discovered with the help
of such instruments as Kepler, HARPS, HIRES, TESS,
etc., exceeded 4300. Of these, more than a hundred
are planets around evolved stars: red giants and sub-
giants. The statistics of the detection of planets around
white dwarfs are more modest. We can mention a planet
around the star WD 0806-661 [3], a recently discovered
candidate for WD 1856534 [4], as well as objects in bi-
nary systems “white dwarf — Main Sequence star” (NN
Ser, Gliese 86). However, there are many more examples
— of the order of 1000 — of “planetary debris” detection
around white dwarfs and in their atmospheres, and those
are products of planets and /or asteroid destruction. Such
conclusions can be made from the analysis of the observed
chemical composition of the atmospheres of dwarfs and
the observations of their circumstellar disks of dust and
rock fragments [5], [6].

Thus, it can be considered an established fact that ob-
jects of planetary masses can not only remain in the sys-
tem after the star has shed its envelope at the later stages
of evolution but also go into low orbits around a compact
object. This makes it relevant to analyze the properties
of planets in the late stages of evolution and their previ-
ous history.

In order to adequately interpret the growing amount of
data on exoplanets around evolved stars and to be able
to judge from these data what kind of evolution the ob-
served planetary system has undergone, it is necessary
to theoretically understand the processes that determine
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the evolution of planetary systems, including those stages
when their parent star retires from the Main sequence
(MS). A model of the evolution of planetary systems un-
der the influence of the evolution of their parent stars
would make it possible to make assumptions about the
past of these systems in relation to the discovered and
observed planets around evolved stars. In addition, it is
desirable that the model also has a predictive potential
for planetary systems around MS stars.

Over the past 10 years, a lot of studies have been de-
voted to modeling the evolution of planetary systems of
stars after the MS stage. Key results and unresolved is-
sues are discussed, for example, in the review [7]. The
evolution of planetary systems in the late stages of a
star’s life occurs under the influence of various factors
and at different levels, depending on the value of the
semimajor axis of the orbit and the mass of a substellar
object (for example, a planet or asteroid) during the life
of a star on the MS, and on how this object in the fu-
ture — after the star leaves the MS, — can be influenced
by factors such as mass loss by the parent star, tidal
effects in a “star-planet” system, radiation (Yarkovsky
effect, YORP-effect), and magnetic fields.

The impact of these factors can manifest itself both in a
change in the orbit of a substellar object and in a change
in its physical parameters (mass and size, temperature,
composition of the surface and atmosphere, etc.). The
impact can be so strong that the object will be ejected
from the system, or it may happen that at the giant stage,
the parent star absorbs it and it ceases to exist. Thus,
in this regard, it is worth mentioning that in addition to
the already mentioned examples of planets around white
dwarfs and giant stars, there are also examples of free-
floating planets: WISE J085510.83-071442.5 [8], SDSS
J111040116 [9], PSO J318.5-22 [I0] and others. Also the
discovery of a free-floating terrestrial planet [11] deserves
a special mention. The number of discovered free-floating
planets is growing, and among them there may be those
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that became unbound after they were ejected from their
parent planetary systems as a result of the mass loss of
a star due to a strong stellar wind.

The final fate of planetary systems is determined not
only by stellar evolution but also by the initial parame-
ters of the planets. There is a large number of modern
studies that are devoted to the theory of planet forma-
tion and modeling of planetary systems (see a review in
[12]). Along with a detailed study of individual systems
(for example, the Solar System) or the development of
details of various stages of the formation of planets and
the evolution of their orbits, an important place is oc-
cupied by the construction of population models, which
at a coarser level include the processes of formation and
evolution of objects in a wide range of initial parameters.
The population synthesis of exoplanets is discussed, for
example, in the works of Christophe Mordasini, Jan Al-
ibert et al. [15], [I7], [18], [16]. In our article, we actively
use the results of these studies.

The aim of this work is to model planetary orbits ac-
counting for the evolution of a star after the MS stage,
as well as to calculate the statistics of absorbed, ejected
from the system, and surviving planets by the time their
parent star turns into a white dwarf. Calculating prop-
erties of the Galactic population of planets we take into
account the history of star formation in the Milky Way.

In section [2] we present the model that underlies our
population synthesis, describe the initial distributions of
planets over masses and orbits carried out in our simula-
tion, as well as the evolutionary models of stars used in
the work. Then, in section [3]| we briefly describe the code
for population synthesis written in the MatLab package.
Section[dis devoted to the results of our study. In section
we discuss our results and approach. The final section
briefly summarizes the main results of this study.

2. MODEL

The population synthesis and modeling of the evolu-
tion of exoplanetary systems carried out in this work
are based on modern approaches to formation of plane-
tary systems and stellar evolution, as well as on a simple
model that links the evolution of a star and changes in or-
bits of the planets. This simple model does not take into
account possible orbital variations resulting from inter-
planetary gravitational interactions. As for binary and
multiple star systems, the model is suitable only for that
fraction of them for which the distance between the par-
ent star and the planet significantly exceeds the distance
to the second star in the system (for binary systems,
where a planet orbits at a large distance from a pair of
stars close to each other, the model does not work since
in this case the evolutionary tracks of stars due to mutual
influence in many cases will be different from those used
in this study).

(1). Model of the orbital evolution

The problem of orbital evolution due to isotropic mass
loss by a central more massive body is well known.
Changes in the semimajor axis of the orbit, eccentric-
ity, and true anomaly with time are generally described
by the following differential equations (see [13], [14]):

@ . a]. +e2 4+ 2 COS(f) Mtot (1)
dt - 1-— 62 Mtot

de . Mtot
i = (et cos() 3~

(2)

ﬁ — _Sin(f) Mtot
dt € Mtot

n(l + ecos 2
S O

where f —is the true anomaly of the orbit, a — its semi-
major axis, e -— eccentricity, Mi,s — mass loss rate in
the system, which in our case is connected only with the
stellar wind from the parent star (Mior = M,), Mot —
total mass of the star - planet system (for our systems
Mot ~ M,, where M, — is the stellar mass), n — mean
motion (n = 2w/ Mo /a®).

The system of equations is complemented with equa-
tions for the orbital inclination ¢, ascending node longi-
tude €2, periapsis longitude w, and periapsis argument w
[13]:
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The system of these equations does not have a com-
plete analytical solution, but there are mass loss regimes
under which an analytical solution is available. We are
interested in one of these regimes. To classify them a
dimensionless mass loss parameter v is introduced. It is
defined as follows:
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For ¥ < 1 an adiabatic regime takes place. Then the

evolution of the orbit is slow and can be described by a
simple analytical formula:

a(At) = a (1 _ ﬁZ‘{) . (5)



Here At is a duration of the evolutionary stage, a(At)
— semimajor axis at the end of the evolutionary stage,
ain — semimajor axis at the beginning of the evolutionary
stage, Mo, — current total mass of the star-planet system
(the planet mass is considered to be constant).

The stellar mass evolution is calculated as follows:

M, (At) = My, — AtM,, (6)

where M, (At) is the stellar mass at the end of the evo-
lutionary stage, Mj, — stellar mass at the beginning of
the evolutionary stage.

For cases where ¢ approaches unity (more precisely
1>0.1) we numerically solve a system of four differential
equations, three of which are given above, and the fourth
describes the evolution of the mass loss rate (see section
3).

(2). Initial distributions of planetary parameters

The key point in our modeling is the choice of initial
distributions of planetary parameters. At the moment,
they are not well known, so one can use different ap-
proaches to specify them. For example, as a basis for
the distribution of exoplanets by masses and semima-
jor axes, one can use the data from one of the catalogs
of confirmed exoplanets. However, modern observational
data are burdened by various selection effects. Therefore,
we decided to use the results of theoretical modeling of
planetary systems.

In recent years, population models of the formation of
planetary systems have been significantly advanced. In
our simulation, when creating the initial distribution of
planets on the plane “semimajor axis of the planet’s or-
bit - planetary mass” (a - Mp), we rely on the results
from the article by Alibert et al. [I7]. In this paper, the
authors calculated distributions over masses and semi-
major axes at the end of the rapid initial dynamical evo-
lution of planetary systems. The emphasis is on the fact
that the calculations were carried out taking into account
the interactions between planetary embryos and planets.
The initial orbits of the embryos ranged from 0.1 to 20
AU, the initial masses were 0.01 Earth mass. The mass
of the central star was taken equal to one solar mass.
The metallicity of the star was chosen randomly from
the metallicities of the stars in the CORALIE list of ob-
jects. The inner radius of the disk was taken to be 0.05
AU, the mass of the disks was in the range from 0.01 to
0.03 Mg, and the surface density at a distance of 5.2 AU
— from 0 to 10 g/cm? with a long "tail” of distribution up
to 50 g/cm?.

Following the approach used by Popkov and Popov [20]
we approximate the a — My diagram presented in [17] by
several groups (see Fig. [2).

Each of the groups I, IV — VI is approximated by a
two-dimensional log-normal distribution, which consists
of two one-dimensional distributions:
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FIG. 1. Distribution of confirmed exoplanets in the plane
“semimajor axis of the planetary orbit - planetary mass” ac-
cording to the catalog exoplanet.eu. The figure shows data
for approximately 1700 planets, including those for which only
the lower limit M sin(4) is known as a mass. Planets around
pulsars and white dwarfs are not included.
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where ¢ and ( are parameters of the distributions, see
table [l

Group II is approximated by a bivariate Gauss distri-
bution of the following form:

1
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where ¢ = 1g($) - Cmv ﬁf = lg(y) - Cyv and Oz, U?ﬂ(f? Cy»p
are parameters given in table [[}

Group III is approximated by a two-dimensional uni-
form (in a logarithmic scale) distribution.

Since the paper [20] focuses on those planets that can
merge with their stars, i.e. on planets situated relatively
close to their stars, the authors limit their modeling to
the listed six groups of planets, which describe most of
the distribution obtained by Alibert et al. in the a — My
plane. Analysis of Fig. 5 in [I7] allows us to state that
it has one more small group of planets (in our Fig.
this is group VIII) — objects that finally appear at wide
orbits as a result of gravitational interaction with other
bodies in multiplanetary systems at early stages of their
lives. According to [I7], the fraction of such planets in
the population considered by us is slightly less than 1%.

This group is described by a two-dimensional "triangu-
lar” distribution uniform in a logarithmic scale, in which
the "hypotenuse” is given by a straight line connecting
the points with coordinates (1g(20), 1g(0.1)) and (1g(700),
1g(1200)), and "legs” are defined in the table
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FIG. 2. Initial distribution of planets by masses and semima-
jor axes of the orbit (15,000 planets are shown).
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FIG. 3. Mass distribution of circumstellar disks according to
[18]. Distribution parameters: ¢ = 0.6, 4 = —1.66. The mass
interval in which planets can form in a self-gravitating disk is
noted.

We also added a group that is not presented in [I7].
These are the planets formed as a result of fragmentation
of a self-gravitating protoplanetary disk. In describing
this group, we follow the study by Forgan et al. [I9]. Ap-
proximating the mass distribution of circumstellar disks
by a normal distribution on a logarithmic scale, as was
done in [18] (Fig. 4 and Table 2 in that paper and Fig.
here) and assuming that the distribution is typical for
the entire range of stellar masses in our work, we calcu-
late the fraction of planetary systems with planets formed
as a result of self-gravity of disk fragments. It should be
noted that several assumptions are made in these calcula-
tions based on the results from [19]. Following this work,
firstly, such planets can form only in disks with masses in
the range from 0.125 to 0.4 stellar masses (lighter disks
are unlikely to be self-gravitating, and heavier ones ac-
crete onto the star very quickly). Secondly, the average
number of disk fragments that can become planets in a
given system was assumed to be equal to four. Finally, on
average, about 40% of these fragments survive. Taking
into account these assumptions, the fraction of § planets
of this group in the population was calculated using the
following equation:

0=104x4x
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When choosing functions for the distributions of this
group of planets we used data presented in Fig.3 and
Fig.7 in [I9] as a guide. The distribution of semimajor
axes is approximated by a function similar to the Maxwell

distribution:
\/5 x? y ( x? )
=4/ —— Xexp(——=).
T K3 P 2K2

Parameter « is given in table [l The mass distribution is
taken to be log-normal.

The fraction of each of the first six groups of planets
is calculated according to [20] (and corrected accordingly
to account for the existence of two more groups). The
percentage of all groups is given in the fourth column of
table[ll

Regardless of which of the groups a planet belongs to,
for the entire population, the lower and upper limits on
the mass are determined. The lower limit is 0.04 Earth
masses. The upper one is 13 Jupiter masses (i.e., about
4120 Earth masses). The lower limit roughly corresponds
to the mass of the least massive planet in the Solar system
(we also note that at the moment only three exoplanets
with masses below this limit are known, see e.g. exo-
planet.eu). The upper limit is related to the lower limit
on the mass of brown dwarfs.

For numerical calculations of planetary orbits for large
values of the 1 parameter, the values of eccentricity and
true anomaly are required. For the entire population, we
take the initial value of the true anomaly f = 0, and the
distribution of the initial eccentricity is set to be uniform
in the range 0.01 < e < 0.1. In our opinion, observational
and/or theoretical data do not allow one to specify the
distribution of this parameter with sufficient accuracy.
Fixing the initial eccentricity at e = 0.1 and e = 0.01 led
to the following change in the key results: the number
of absorbed planets changed at the level of < 1%, the
number of ejected planets — at the level of < 0.04%.

(3). Evolutionary tracks

For calculations of the evolutionary tracks we use the
MESA package (Modules for Experiments in Stellar As-
trophysics, Release 10398) [2I]. Evolutionary tracks of
stars with metallicity Z = 0.02 are constructed for the
following initial masses: from 1 to 2.6 solar masses with
a step 0.1 Mg, then — for masses 2.8 Mg, 3 My and
3.25My, and finally, for larger masses with a step 0.25



TABLE I. Groups of initial distributions of planets in the plane a - My and their parameters (units of measurement — AU and

Earth’s masses, unless otherwise indicated).

Group Distribution

Parameters Fraction of

planets

I 2D Log-normal

Ca = In(0.5)
Cv = In(500)
oq =09

6.72%

1I Bivariate Gauss

Ca = 1g(0.5)
(v =0
oq = 0.25
oy = 0.45
p=—-038

46.78%

111 Uniform in logarithm

log10(amin) = —0.7
log 10(Mmin) = —1.39
lg(amaz) = 1.3
logl0(Mmaz) = 1.6

5.19%

I\% 2D Log-normal

Ca = In(0.2)
Car = 1n(0.4)
oq = 0.5
op = 0.8

17.61%

A% 2D Log-normal

Ca = In(0.045)
¢m =1In(0.7)
oq = 0.2

6.04%

oy = 0.8

VI 2D Log-normal

Ca = In(0.06)
Cv =1n(12)
oq = 0.05

oy =05

2.72%

VII
Maxwellian (for orbits)

Normal in logarithm (for masses)

Cm = 23 mjup
om = 20 myyp
a =40

13.95%

VIII

Triangle uniform in logarithm

lg(amin) = 12(20)
lg(Mymin) = 1g(0.04) 1%
lg(Momaz) = 1g(1200)

lg(amam) = 1g(700)

Mg, up to 8 solar masses. Tracks for less massive stars
were not used in the simulation, because the red gi-
ant stage in these tracks is reached in a time exceeding
the age of the Galaxy (see subsection "Masses of white
dwarfs” in the section devoted to the results of the work).

For calculations of the mass loss rate at the stage of
a red giant (Red Giant Branch — RGB), we apply the
Reimers formula [22]:

M, 13 L R\ (M N\ !
Mg year—t A0 (LG) <R®> (Me) .
(10)
Here L is the current luminosity of the star, R — the
current radius of a star, and M — the current mass of a

star (all variable are taken in solar units). ng is a free
parameter: for stars with initial masses up to 3 solar
masses its values are set in the range 0.1-0.7 for both the
RGB and the asymptotic giant branch (AGB); for more
massive stars we use same range for the RGB, but for
AGB we take ng in the range from 0.5 to 7.

To calculate the mass loss rate at the AGB stage, we
use the Blocker equation [22]:

M, 13 L R M\
— =4 x10 — —_—
Mg year—1 . G (LG) (R®> <M®> .

L 2.7 M —2.1

4. 107° _= = .
X4.83 x 10 (L> (M)

(11)
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FIG. 4. Hertzsprung-Russell diagram. Evolutionary tracks
from the MS stage to the white dwarf stage are shown. The
initial masses are indicated.

All the tracks used for modeling have been calculated
up to the stage of white dwarf. The criterion for the onset
of this stage is the drop in luminosity (due to cooling)
below the critical value (see [ after the end of the mass
loss.

Models of stars with an initial mass greater than 3 so-
lar masses have also been brought to the stage of a white
dwarf. In this case, the asymptotic giant branch in the
models of massive stars used in this work ends with the
stage of thermal bursts (Thermal Pulse Asymptotic Gi-
ant Branch — TPAGB), which is limited to one or two
short-term increases in luminosity (and mass loss rate).
During them, a large part of the helium-hydrogen shell
of the star is lost (see Fig. and [19|in the Appendix),
after which the track "turns” towards an increase in the
effective temperature, and the star passes to the plan-
etary nebula stage where mass loss also occurs (several
tenths of Mg is lost then).

Evolutionary tracks for stars with an initial mass less
than 3Mg start at the pre-main sequence stage. For
more massive stars tracks start at the MS. Results of
calculations of the stellar evolutionary track for each ini-
tial mass include a group of profile files, each of which
describes the stellar structure at the corresponding mo-
ment of time, and a history file containing information
about changes along the track in the main parameters
of the star. The parameters whose changes are recorded
in the history include the current age of the star, its ef-
fective temperature, its luminosity, mass, radius, mass
loss rate, hydrogen and helium content in the center of
the star, and many others. The history files of the tracks,
which we calculated in MESA, contain information about
changes in the main parameters of the star over numerous
time intervals along the track. The number of these time
points varies from ~ 1200 up to 30000 for different stellar
masses. Most of these intervals correspond to the evolu-

tion of the star after the MS, including the asymptotic
branch and the red giant branches.

From the parameters contained in the history files, for
the population synthesis we directly need the mass loss
rate, the radius of the star, and the corresponding age
of the star, or the duration of the current stage of evolu-
tion. The main procedure of our population synthesis is
a calculation of the planetary orbit at each evolutionary
stage of the parent star. In this regard, one of the tasks
is not to overload the program code with too much com-
putation due to a large number of evolutionary stages.
Another task is to monitor excluding some “superfluous”
evolutionary stages, that the remaining stages and the
corresponding mass loss rates give the same (within the
error) final mass of the star (i.e., the white dwarf mass)
which is obtained in the MESA calculation. The third
task is not to exclude as a “superfluous” the stage when
the radius of the star reaches its current maximum (be-
cause a growing star can swallow a nearby planet).

Solving these problems and working with the depen-
dencies of the mass loss rate on time and of the stellar
radius on time obtained from the data of history files, we
make truncated versions of the tracks containing from 30
to 170 evolutionary stages, depending on the mass of the
star. The longest ones are those where the largest num-
ber of thermal flashes occurs at the TPAGB stage (an
example of a fragment of such track is shown in Fig.
in the Appendix). The masses of white dwarfs obtained
from the truncated tracks are systematically larger than
the masses from the original tracks within 1%. The first
stage in each of the tracks turned out to be the longest.
This is the MS stage. The rate of mass loss on the MS is
calculated as the average value of the rate of loss at the
beginning and at the end of the stage of MS. We consider
the zero-age MS as the stage when the central content of
hydrogen decreased by one hundredth compared to its
initial content. The end of the MS is the moment when
the central content of hydrogen becomes less than one-
hundredth of the initial one. In all truncated tracks for
each of the stages its duration, the average rate of mass
loss at this stage, and the radius of the star at the end of
the stage are prescribed. In some tracks of massive stars,
there are stages whose duration does not exceed several
years. This is done in cases when the rate of mass loss is
very high (higher than 107*Mg yr~!, see Fig. [18in the
Appendix).

3. POPULATION SYNTHESIS. THE CODE

The code is realized using the MatLab package. At
the first step, we assign the total number of “star-planet”
pairs as one of the constants. This value determines the
number of repetitions in the cycle of the procedures de-
scribed below, as well as the number of planets of each
of the groups in the a — M, plane. Each “star-planet”
pair in the code randomly gets values of the semimajor
axis of the planet’s orbit, the mass of the planet, and
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FIG. 5. The history of star formation in the Galaxy used
in the simulation. The bin width is 50 million years. The
number of stars in the sample is 500000. The normalization
is made in such a way that the mass of all stars formed in
the Galaxy in the range from 1 to 8 solar masses is equal to
19.55 x 10° M.

the mass of the star. This is done by the pseudo-random
number generator built into MatLab in accordance with
the described initial distributions. The initial distribu-
tion of stellar masses is given by the Salpeter function:
dN/dM ~ M~23 |23], [24]). The generated masses of
stars lie in the range from 1 to 8 M. The initial eccen-
tricity and the true anomaly of the planetary orbit are
also defined. These values are chosen to be the same for
all systems.

Also, at the first step, for each system, a bin in the star
formation history (“age group”) is determined as well as
the maximum possible age of the star corresponding to
this group. To do this, the entire history of star for-
mation in the Galaxy is divided into several stages (see
Fig. [5) with different rates of star formation, following
the approximation in Fig. 1 in [25]. It is assumed that
throughout the history of star formation, the initial mass
distribution of stars is given by the Salpeter function. For
each stage, we calculate the ratio of the total mass of stars
formed during this time interval to the total mass of stars
in the Galaxy in the range from 1 to 8 solar masses. The
latter is equal to 19.55 x 10° M, since the total initial
mass of all stars in the Galaxy, formed during its lifetime,
is assumed to be equal to 50 x 109 M, see [25]. This ratio
determines the range of random numbers corresponding
to stars formed at a given stage in the history of star
formation. Next, using a pseudo-random number gener-
ator, we get a value that determines the "age group” of
the star. Then, again using the pseudo-random number
generator, as well as conditional operators, we define the
maximum possible age of the star.

Then the coefficient Npjanets is calculated, which de-
termines the number of planets around the star. The
formula for calculating this coefficient is taken from [20]:

N _ (M*/MG)LQ X Nplanet,sun  if My < 1.5Me;
Pnet T 10, if M, > 1.5M.
(12)

Here Npjanct,sun = 8 — the number of planets in the So-
lar system. This coefficient allows us to calculate the
average number of planets around a star, it is used as
an additional factor in obtaining the final distributions
of planets (see eq. [13).

At the next step, the mass of the star in the current
system is compared with the masses of the stars for which
the evolutionary tracks are built, and for further work,
the model with the closest mass is selected and the cor-
responding truncated track file is read. That is, the mass
distribution is binned according to the selected values of
the initial track masses calculated in MESA. The value of
the semimajor axis of the orbit and the value of the mass
of the star at the first evolutionary stage of the track are
assigned equal to the initial values of the orbit and the
mass of the star.

Next, the ¥ parameter is calculated. If its value is less
than 0.1, then the value of the semimajor axis of the orbit
and the mass of the star at the end of this evolutionary
stage are determined by the formulas and @, and
the eccentricity and the true anomaly are not changed.
If ¢ >0.1, then the system of equations - with
the condition M* = const is solved numerically with the
Runge-Kutta method (RK4); the constant in this condi-
tion is determined by the value of the mass loss rate read
from the file at this stage. The grid spacing is selected
based on the duration of the evolutionary stage: the min-
imum spacing — 0.1 yr, — is chosen for very short stages
and for stages when v > 3. For stages longer than 100
years, a spacing of 5 years is used, with a stage duration
of more than 1000 years — 50 years, for all others — 1
year.

After solving the specified system of equations, for
the next evolutionary stage in addition to new values
of the stellar mass and the semimajor axis of the plane-
tary orbit, we define new values of eccentricity and true
anomaly. Before moving on to the next evolutionary
stage, the current value of the orbit is compared with the
current radius of the star, and the current age, calculated
as the sum of all past evolutionary stages, is compared
with the maximum possible age.

If the value of the planet’s pericentric distance and
the current value of the stellar radius become equal or
the stellar radius becomes larger than the planet’s orbit,
then the index of absorbed planets is increased by one.

The number of evolutionary stages in the track deter-
mines the number of repetitions of the calculation of the
current mass of the star. It also determines the number
of repetitions of the calculation of the value of the semi-
major axis of the planet’s orbit, if the value of ¥ does
not exceed 0.1.

The calculations stop if the current age of the star at
some stage reaches or exceeds the final age determined



initially for it.

If the eccentricity reaches the value e > 0.998 (in the
middle or at the end of the evolutionary stage), then the
planet is considered as escaped; the evolution of the el-
ements of the orbit is suspended/stops (until the end of
the system evolution on all at the next stages their values
are preserved, fixed at the moment, when the eccentricity
became greater than 0.998). The mass of the star con-
tinues to be calculated in accordance with the loss rates
both at the current and at each of the following evolu-
tionary stages using eq. For a test we varied the
critical value of the eccentricity in the range from 0.99
to 0.999 — this did not lead to a significant change in the
number of runaway (and absorbed) planets. At the crit-
ical value of e > 0.999, we encounter instability in the
code performance.

The values of the elements of the orbit, as well as the
values of the mass and radius of the star, are saved at the
end of each evolutionary stage (i.e., their values are also
available after the completion of the entire program).

If the eccentricity value turned out to be less than zero
at the current grid then the stage can be re-calculated
with a reduced time step (down to 0.01 year). In such
case, we numerically solve the system of equations ([1f) —
B).

For the final estimate of the Galactic population of es-
caped and absorbed planets and to obtain the final dis-
tributions of surviving planets in orbits and eccentricity
(for the range of initial masses of stars stated above) we
use the coefficient Vpjanets from eq. and the coefficient
k (see eq. . So the desired number N corresponding
to certain characteristics of the planets (for example, es-
caped or absorbed, etc.) in the Galaxy is determined as
follows:

N(’.Ot
Ncalc Zn:l Nplanets,n

N =k
Ntot

(13)

where N is the number of planets with the correspond-
ing characteristics in the results of modeling, Ny is the
total number of “star-planet” pairs in the modeling (it is
equal 500000 in all our runs). The coefficient k is calcu-
lated as:

. fls M—23dM
== X
Ntot

MGal

X085 150 7, _ J
o1 M 0'3dM—|—f0.5 M-13dM

where Mg, — the total mass of all the stars in the Galaxy
(50 x 10°Mg, see [25]), Niot = 500000, as it is in eq.
For these parameters, we obtain the following value:
k ~ 17851.

Mass, Earth masses, decimal logarithm

Semimajor axis of the orbit, AU, decimal logarithm

FIG. 6. Modeled distribution of planets by mass and semima-
jor axis at the final stage of evolution. Top: for the stars of
the population that evolved to the white dwarf (WD) stage;
bottom: for all stars. The “4” signs mark the planets around
the stars that have not reached the WD stage. In order not to
clutter up the figure, just 100000 points are shown, i.e. 20%
of the population considered in the modeling.

4. RESULTS

(1). Orbit distribution. Escaped planets

The modeling shows that about 60.2% of the popula-
tion of 500,000 planets turned out to be absorbed by
parent stars at the red giant stage (RGB and AGB),
about 0.3% left their planetary systems and became free-
floating planets. Using the egs. [[3]and [I4] and basing on
the obtained statistics of runaway planets, we estimate
their number in the Galaxy. The obtained values are in
the range of about 278 - 297 million.

Moreover, in those ranges of stellar masses that are
not covered in the code, according to our assumption,
stars practically do not produce runaway planets — ei-
ther due to insufficient mass loss and stellar wind in the
case of small stellar masses, or due to the short lifetime
of the circumstellar disk in the case of massive stars with
a powerful radiation flux [34]. Of course, a certain num-
ber of planets can leave their systems due to dynamic
interaction with other objects, but such a channel is not
considered in our study.

For the surviving planets around the stars that have
gone through all the evolutionary stages and have become
white dwarfs, the minimum values of the semimajor axis
of orbit are observed for planets from the I-IV groups of
a — My distribution (the smallest value — about 1.036
AU, — for a planet from group II with initial semimajor
axis of about 0.538 AU, and initial eccentricity e =~ 0.01,
which has changed little during the life of the star). The
maximal orbits are obtained for planets of groups VII and
VIII; the runaway planets also appear only in groups VII
and VIII. Most of the escaped planets have initial orbits
close to 100 AU, see Fig. [7]

No planets of the groups V and VI (see also Fig. [2)
survive around the stars that managed to evolve to the
white dwarf stage, see Fig. [f] They are absorbed by
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FIG. 7. Distribution of the initial orbits of runaway planets.
The bin is 20 AU. The number of objects is normalised to the
parameters of the Galaxy.

the expanded envelopes of their parent stars at the giant
stage. This is due to the fact that by the time they turn
into a red giant, stars manage to lose such a fraction of
their mass that the orbits of the planets increase little and
the planets of the indicated groups situated close to the
star are absorbed; the least massive stars shed a larger
fraction of their mass on the RGB than on the AGB, but
their radii also increase more significantly at this stage.
It is also worth noting that among the population of stars
that did not have time to evolve to the white dwarf stage,
there are also those that swallowed up their planets.

A significant group of planets are moved to highly ec-
centric orbits (Fig. . Since the formal criterion for a
planet to leave its parent system is to reach e = 0.998,
among the surviving planets there are several examples
with an eccentricity e > 0.99 and an orbit of more than
10° AU, and a couple of planets have orbits even more
than a parsec. It is clear that such planets can be con-
sidered as bounded only according to the formal crite-
ria indicated above, but taking into account, for exam-
ple, Galactic tides they should be classified as “escaped”.
However, in the statistics presented here, they are not
included in the number of escapes. This is justified as
the number of planets with orbits larger than 10* AU,
but which did not formally leave their parent systems,
turned out to be relatively small — about 0.034:0.003% of
the considered population, and in terms of the Galaxy —
about 30 million planets.

The distribution of the remaining (survived) planets
by orbits around white dwarfs is shown in Figure [0 In
particular, it shows the presence of a local maximum in
the distribution of the number of planets in the region of
100-200 AU. This maximum is associated with the pres-
ence of a fairly large group of planets with large initial
values of the semimajor axis of the orbit (see also Fig.
Fig. [6] and table I).

Number of planets, decimal logarithm
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FIG. 8. Distribution of survived planets by the eccentricity
for host stars that evolved to the white dwarf stage. The bin
width is 0.05. The number of objects is normalized to the
parameters of the Galaxy.
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FIG. 9. Final distribution of planets by the semimajor axis
of orbit for stars that have evolved to the white dwarf stage.
Left: the bin width is 20 AU, Right: the bin width is 200 AU.
The number of objects is normalized to the parameters of the
Galaxy.

(2). Future of the Earth

Using the code described in this study we also perform
modeling for the Earth-Sun system (the current age of
the Sun is taken as 4.58 billion years).

In our model, by the time the Sun turns into a white
dwarf with a mass of about 0.52 My, the Earth will not
be absorbed by the star at the red giant stage and will
have a semimajor axis of about 1.922 AU. (Fig. .
However, there are studies that show that the Earth will
be absorbed by the Sun when the latter is at the red gi-
ant stage. Thus, according to calculations presented in
the paper by Schroeder and Smith [32] the Earth will be
swallowed up due to tidal effects, which are not taken into
account in our work. However, judging by the maximum
value of the radius of the Sun in our model, even account-
ing for the tides would not lead to the absorption of the
Earth. The maximum value of the radius of a star with
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FIG. 10. The result of calculation of the Earth orbital evo-
lution (the asterix symbols, upper curve) and the evolution
of the solar radius (lower curve) using the MESA track for a
star with the initial mass of 1Mg.

an initial mass of one solar mass that we obtained from
the MESA tracks is inferior to the values given in the
paper [32]: 255 R, or about 1.188 AU, versus 185 Rg,
or 0.844 AU, in our model. It should be noted, however,
that the evolutionary model for the Sun in the mentioned
work was obtained for the metallicity Z = 0.0188, which
is closer to the real solar metallicity than the value of
Z = 0.02 used in all tracks in our simulation. We also
note that in addition to the radii, the time that the Sun
lives before it reaches the peak of the giant stage also
differs (in the model by Schroeder and Smith this occurs
approximately 20 million years earlier, compare Fig.
in our work and Fig. 1 in [32]).

(3). Escaped planets and planets around massive
stars and giants

There are currently very few observational examples
of planets around stars with masses of 3 or more solar
masses in exoplanet databases. Confirmed examples in-
clude the following planets: o UMa b, Hip 79098 (AB)
b, HD 17092 b, HD 13189 b, HD 119445, v Oph b and
¢, BD+20 2457 b and cE”ﬂ Moreover, the latter four are
more likely to be brown dwarfs than planets. There are
studies and observational programs devoted to the search
for planets around giant stars, and no planet was discov-
ered during one of such studies in which more than a
hundred stars more massive than 2.7 Mg were observed.
Discussing these results, the authors suggest that the
conditions in the protoplanetary disks around stars with
initial masses above 2.5-3 Mg are such that, in princi-
ple, giant planets cannot form there. At the same time,

1 exoplanet.eu/catalog

2 https://exoplanetarchive.ipac.caltech.edu/cgi-bin/
TblView/nph-tblView?app=ExoTbls&config=PS
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FIG. 11. Distribution of the initial masses of host stars whose
planets were ejected from the parent systems. The bin width
is 0.5 My. The number of objects is normalised to the pa-
rameters of the Galaxy.

there are other studies devoted to the planets around
stars with masses in the range from 6 to 8 solar masses
[34] and showing the theoretical possibility of the survival
of planets around such stars.

Massive stars are of interest to us because they lose a
sufficient amount of mass during their evolution prior to
the white dwarf stage and achieve, at the corresponding
stages of their evolution, such rates of mass loss that
can lead to the loss of planets (see Fig. . In our
simulation, the least massive star which ejected its planet
due to mass loss by the end of evolution, has an initial
mass of 2.6 M, (the initial orbit of this planet belonging
to the VIII distribution group a — My, is ain =~ 663 AU).
For the escaped planets from the VII distribution group
a — My, the least massive stars were those with masses
starting from 3.5 M.

Since the star is losing its mass, observational examples
of interest may not be only stars more massive than 3
Mg, but also planets of slightly less massive stars that are
at giant stage and have already lost some of their mass.
There are many more examples of planets around giants
than among stars more massive than 3 solar masses —
about 150 objects, discovered in most cases by variations
in radial velocity. Most of these planets have orbits with
semimajor axis less than 5 AU (Fig. . Examples of
planets with a semimajor axis larger than 10 AU around
giant stars have not been discovered, yet (although there
are several examples among subgiants — TYC 8998-760-1
bP x And b[f] 51 Eri b[}).

Our simulation shows that on average, for escaped
planets with small initial orbits the total mass ejected
by the star should obviously be larger than for the plan-
ets initially remote from their stars. The closest of the

3 http://exoplanet.eu/catalog/tyc_8998-760-1_b
4 http://exoplanet.eu/catalog/kappa_and_b
5 http://exoplanet.eu/catalog/51_eri_b
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FIG. 12. Distribution of exoplanets in the a — My plane
around giants and subgiants according to the exoplanet.eu
catalog.

escaped planets in our simulations has the initial orbit
ain ~ 52 AU and eccentricity close to e = 0.1. It was
ejected by the star with the initial mass of 7.5 Mg. Thus,
one can conclude that according to the observational data
from exoplanet catalogs, a candidate for future escaped
planets cannot be found among the already discovered
planets. However, there are several examples of objects
with high eccentricity among the confirmed planets of
giant stars: HD 76920 b has an eccentricity e = 0.856
and the semimajor axis a = 1.15 AU, HD 75458 b has
e =0.713 and a = 1.275 AU, HD 238914 b has e = 0.56
and a = 5.7 AU, HD 102272 ¢ has ¢ = 0.68 and a = 1.57
AU, HD 14067 b has e = 0.533and ¢ = 3.4 AU, Hip 97233
b has e = 0.61 and a = 2.55 AU, HD 1690 b has e = 0.64
and a = 1.3 AU, Kepler-432 ¢ has e = 0.64 and a = 1.188
AU, BD+48 740 b has e = 0.76 and a = 1.7 AU} Among
the indicated systems there are those where the star has
a mass of about 1.5 and even ~ 2 My. Depending on
the rate at which these stars will lose most of this mass,
the eccentricity of the planetary orbits in the future the-
oretically may turn out to be larger than unity, i.e. the
planets will be no longer connected to their host stars.
If we consider not only planets around evolved stars but
also around MS stars, then we can also find candidates
for future escaped planets.

5. DISCUSSION
(1). White dwarf masses

In the simulation, 82-83% of the stars in the consid-
ered population manage to reach the white dwarf stage.
The resulting mass distribution of white dwarfs is shown
in Fig. [I3] The most massive white dwarf obtained in
our calculations has a mass of about 1.16 My, and the

6 http://exoplanet.eu/catalog
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FIG. 13. Calculated white dwarf mass distribution for the
stars with initial masses in the interval 1-8 M. The bin
width is 0.1 Mg. The number of objects is normalized to the
parameters of the Galaxy.

lightest — 0.519 Mg. The comparison with modern the-
oretical and observational data on white dwarfs shows a
relatively good correspondence between our results and
the data if we take into account that our modeling does
not include the evolution of low-mass stars of low metal-
licity (compare Fig. |13| with the data from [31], [29] and

I30]).

As it is mentioned in the Subsection“Evolutionary
Tracks”, the lifetime of stars with masses below 1 Mg and
metallicity Z = 0.02, before they become white dwarfs,
exceeds the lifetime of the Galaxy, according to MESA
calculations. Thus, for a star with an initial mass of 0.9
Mg, the lifetime on the MS is about 13.3 Gyr, and for
such a star it takes about another 4.5 Gyr to reach the
peak of the giant branch. A star with a mass of 0.95 Mg
lives on the MS for approximately 10.6 Gyr, and another
4 Gyr passes before it reaches its maximum radius on the
giant branch.

We compare our results obtained in MESA with the
results of calculations of evolutionary tracks carried out
by different scientific groups. In particular, the article
[28] presents evolutionary models of low-mass stars. In
this study the following MS lifetimes for stars with metal-
licity Z = 0.02 and an initial mass of 0.8 and 0.9 solar
masses are obtained: 22.7 and 14 Gyr, respectively. For
a star with the initial mass 0.95 Mg, a comparison was
made with the PARSEC tracks by the Padova group [35].
After 13.7 — 13.8 Gyr the central hydrogen abundance of
a star of the indicated initial mass manages to fall by
more than two orders of magnitude (which can indicate
the end of the MS stage). But the star is still far from
even reaching the stage of a giant, not to mention a white
dwarf. Thus, comparison with modern advanced calcula-
tions of stellar evolution allows us to consider our choice
of the mass interval of the white dwarfs’ progenitors as
appropriate.
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TABLE II. Comparison of the maximum stellar radii in dif-
ferent models

Initial mass PARSEC SSE MESA

2M¢ 1.147 AU 1.869 AU 1.536 AU
5M¢ 2.16 AU 4.98 AU 1.899 AU
6Meo 3.034 AU* 5.97 AU 2.252 AU

* By the time TPAGB stage begins in a star with the mass
6M¢ the radius is 2.95 AU.

(2). Evolutionary tracks

Since the radii of stars and their mass loss rates at dif-
ferent stages of evolution obtained using the MESA pack-
age play a decisive role in the final statistics of the planets
in our modeling, they deserve discussion and compari-
son with known calculations. We have already discussed
the differences for stars with the mass 1 Mg above. For
more massive stars comparison of our results with others
is complicated due to the presence of the TPAGB stage
where the radius increases repeatedly over n pulsations
of the star, and not all the tracks are calculated to the
end of TPAGB. Table [l provides comparisons for some
initial masses.

Among the tracks constructed in MESA and used in
the modeling, the maximum radius is achieved by a star
with an initial mass of 6 Mg. It is =~ 2.3 AU. Judging
by our comparison, the maximum radii of the models
obtained in MESA are smaller than in the SSE models.
Many of the available PARSEC tracks do not reach the
end of the TPAGB stage, thus comparison is not possible.

As for the mass loss rates, in MESA for the tracks of
the most massive of the considered stars (from 3.5 Mg
up to 8 Mg) we obtained very large values at certain
very short stages of evolution. This does not correspond
to the existing observations. The largest value — 10722
Mg, yr—1, — is obtained for models with initial masses 6.0
and 7.5Mg. In such cases, a star loses mass at this rate
over a period of about fifty years. Note, that our models
for stars with masses in the mentioned interval evolve
from AGB to white dwarf stage losing their envelopes
almost without thermal pulses (see Figs. , which
is also not typical according to the observations. Still, in
the case of massive stars, it is important for the fate of
the planets that these stars lose much more than half of
their mass during their evolution after the onset of the
MS. Due to this, it becomes possible that the planets are
no longer bound to their parent star.

Calculations of stellar evolution with mass loss rates
close to ours (4 +7 x 107* Mg yr=!) at the end of the
AGB stage and during the ejection of a planetary nebula
can be found in [36], [37]. The estimates of the stellar
“superwind” for some of the observed OH/IR stars [38],
[39], [41], [40] reach up to ~ 1073 Mg yr—! . Note, that
the famous Blocker’s equation (see eq. (11) above) was
proposed in the context of a discussion of high mass loss

rates from Mira Ceti type stars and OH/IR stars.

(3). Model development

One way to improve the model is to consider the het-
erogeneity of the chemical composition of the stars in the
population. As already indicated, all evolutionary tracks
of stars in MESA are calculated for an initial metallicity
of Z = 0.02. Focusing on modern models of the chemical
evolution of the Milky Way, it is necessary to reflect the
heterogeneity of the metallicity of the stellar population
of the thin and thick disks and, possibly, the bulge of the
Galaxy [43], [42]. To do this, it is necessary to supple-
ment the track grid by calculating the evolution of stars
with metallicity Z ~ 0.005, corresponding to the peak of
the distribution for thick disk stars (see Fig. 3 in [42])
and, possibly, metallicity Z a 0.04 for bulge stars (Fig.
5 in [43]).

An important factor determining the statistics of plan-
ets obtained in the work is the assumptions made about
their initial distribution in the a — My plane. This dis-
tribution may be very different from the one used here.
It is also important that the same distribution is used
for different stellar masses. This is a significant simplifi-
cation, which is made due to the lack of population cal-
culation data differentiated by masses. Apparently, the
corresponding data will appear in the nearest years (this
is evidenced by the first works of a large cycle, that the
Bern group [44], [45], [46] began to publish).

Also, a very significant parameter for the statistics ob-
tained in our study is the stellar mass loss rate. It should
be noted that the decisive factor that prompted us to
work with this grid of tracks calculated in MESA was the
successful calculation of evolution up to the white dwarf
stage and we obtained the final masses of stellar remnants
directly. Thus, we did not have to resort to third-party
sources or approximation formulas connecting the initial
and final masses of stars in order to determine the mass
of the star at the end of evolution for each track. If it
is possible to obtain evolutionary tracks brought to the
white dwarf stage with a more convincing evolution of
mass loss rates, stellar radius, and other physical char-
acteristics of stars then they will be used to improve the
model.

In the current code, we do not take into account the
influence of tides. We can try to estimate how the final
statistics of absorbed and surviving planets will change,
based on the obtained distributions and on data on the
tidal absorption of planets by giant stars. However, cal-
culations of tidal interaction still suffer from a number of
uncertainties.

Tidal effects can affect the results of calculations for
planets in close orbits around white dwarfs. In our sim-
ulation it turned out that at the end of evolution (at
the white dwarf stage) there are a fairly large number of
surviving planets in orbits close to their stars (Fig:
within 2 AU — about 3.7 billion which is less than one-
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FIG. 14. Integral orbital distribution of the surviving planets
around white dwarfs. Left: bin width is 2 AU; right: bin
width is 20 AU. The number of objects is normalized to the
parameters of the Galaxy.

fifth of all surviving planets (about 18%), and within
4 AU — about 30%. However, the distribution of the
masses of these planets shows that only a small fraction
of the surviving planets close to their stars — planets from
group I — have Jovian-scale masses. While among other
surviving planets close to their parent stars, the average
masses are about 1-5 Earth masses in group III (plan-
ets more massive than 0.15 Jupiter mass are not found
in the results of calculations), and less than one Earth
mass in group II (the most massive are also about 0.15
Jupiter mass). Such results give reason to believe that
taking into account tidal effects with other assumptions
unchanged will increase the fraction of absorbed planets
by no more than a few percent compared to our results
since the role of tides is more important for massive plan-
ets.

Finally, there are a number of poorly known param-
eters associated with the general normalization of the
number of planets. For example, we used a specific type
of dependency presented in equation (12). Most likely in
the future, for example, after increasing the statistics of
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known planets supplemented by the Gaia and PLATO
satellite data, it will be possible to specify the number
of planets in different types of systems with greater ac-
curacy. For now, we have used a simplified form of the
number of planets versus mass dependence, which leads
to some systematic uncertainty in the total number of
planets absorbed, survived, and ejected.

6. CONCLUSION

In this paper we presented population synthesis mod-
eling of properties of planets at the late stages of stel-
lar evolution. Using the MESA package we model the
evolution of stars from the Main Sequence stage to the
formation of a white dwarf. We calculate the statistics
of planets with different fates: absorbed, ejected from
the system, and surviving by the time their parent stars
transform into white dwarfs. We demonstrate that for
the initial distributions of planets in the plane a — M,
accepted in the work, the majority (~60%) of planets
born around stars in the mass range from 1 Mg up to
8 My, is absorbed by their parent stars at the giant stage.
A small fraction of planets (~0.3%) is ejected from their
systems due to the mass loss by their host star. We esti-
mate the number of escaped planets with masses in the
range from 0.04 Earth masses to 13 Jupiter masses in the
Galaxy. It amounted to about 300 million objects.

We thank the anonymous reviewer for useful comments
that helped to improve the manuscript. The work is par-
tially supported by the Interdisciplinary Scientific and
Educational School of Lomonosov Moscow State Univer-
sity “Fundamental and Applied Space Research”.
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FIG. 15. Hertzsprung—Russell diagram for most of the tracks
from the MS to the point of helium burnout in the center of
the star.
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FIG. 16. Post-MS mass loss rates used in the modeling. The
dots correspond to stages of the truncated tracks.

APPENDIX

This section provides examples of evolutionary tracks
obtained in MESA and used in the study.

Figure [15|shows the "Effective temperature - Luminos-
ity” diagram of most of the tracks used in the simulation.
The evolution from the Main Sequence stage to the stage
of helium burnout at the center of the star is illustrated.

Figure (16| shows the mass loss rates used in the mod-
eling.

Fig. [I7]illustrates the evolution of the mass loss rate for
a star with an initial mass of 2.3 solar masses. The curve
contains points corresponding to the truncated tracks
described in the work: between each two neighboring
points, there is a section corresponding to the evolution-
ary stage on which the mass loss rate is considered as
the arithmetic mean of the loss rate values at these two
points, i.e. at the beginning and at the end of the stage.

In Fig. [1§] we show in detail the evolution of mass loss
rate for a star with an initial mass of 6. Along with
the model of a star with an initial mass of 7.5M¢, this
model demonstrates the maximum local mass loss rate
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FIG. 17. A fragment of the track of a star with the initial mass 2.3 My at TPAGB stage. The dots correspond to stages of

the truncated tracks used in the modeling.

among all tracks.
10722 Mg yr—L.
Fig. [[9shows the evolution of luminosity in the model
with an initial mass of 6Mg. As indicated in the sec-
tion [2 in MESA models of massive stars the TPAGB
stage turned out to be represented by a single increase in
luminosity, rather than a series of thermal flares.

This rate is approximately equal to

Figure [20]illustrates the evolution of the masses in the
tracks used in our simulation.

Fig. and 22 show the evolution of the stellar radii
for the models used in this study. The dots mark the
values with which the semimajor axes of the planetary
orbits are compared during the evolution of systems.
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